Главная » Статьи » Физика и математика » Мои статьи |
В своём доказательстве правомерности системы LT В. Викулин ссылается на тот неоспоримый факт, что после формально математического умножения обеих частей уравнения на одно и то же число (в рассматриваемом случае это (G)) равенство не нарушается. Тогда: G * F = G * G * M * m / r2 = (G * M) * (G * m) / r2 При переходе к новым переменным Викулин получает: F' = (GM(СИ)) * (G m(СИ)) / r2 = (M') * (m') / r2 или F(LT) = (M(LT) * m(LT)) / r2 Вот и всё доказательство. Как удивительно красиво и просто всё получается на бумаге! Вот логика Викулина дословно: «Корректны ли подобные преобразования? Да, т.к. они выполнены в соответствие с формальными математическими правилами, следовательно – полученное равенство эквивалентно исходному. Меняется ли суть переименованных физических величин? Разумеется, нет, меняется только их численная величина и размерность. Именно в силу такой эквивалентности строго логически и математически доказать несостоятельность LT-системы физических величин невозможно! Действительно, если предположить, что такое доказательство получено, то оно же, в соответствие с законами логики, должно доказывать несостоятельность исходной системы (СИ). А т.к. исходная система по условию задачи считается корректной, то корректной должна быть и полученная из нее LT-система». (Жирный шрифт наш. - авт.) Итак, как пишет сам автор, его доказательство построено на формальных математических правилах. Самое удивительное, что это пишет человек, который сам же выступает против засилья формальной математики в физике. Однако Владимир Викулин, специальность которого по образованию не формальная, а именно прикладная математика не учёл самого главного. Никаких законов логики, кроме логики природы в природе не существует. Поэтому формальной математики, в которой записываются вовсе неформальные законы природы, не бывает! Теорию мироздания нельзя построить на формальной логике! А неформальная логика природы состоит в том, что двух одинаковых истин не бывает. Каждая Истина всегда одна. Поэтому логика природы, изложенная математическим языком, предусматривает не усложнение математических выражений, отражающих истинные закономерности природы путём умножения их на дополнительные множители, а наоборот их упрощение путём сокращения всего лишнего для одной единственной истины. В противном случае, умножив или разделив природные закономерности на бесконечное число множителей, а так же прибавив к ним бесконечное число слагаемых со своими знаками, мы получим бесконечное число истин, чего не может быть в принципе! В физических выражениях не должно быть ничего лишнего и формального, не предусмотренного законами природы. Поэтому сколько бы раз мы не умножали закон тяготения на (G), но после обязательного в соответствии с законом сохранения истины сокращения на общие множители, в нём останется ровно столько (G), сколько заложено природой, которая не предусматривает отличие гравитационной силы от силы тяготения Ньютона в G, G2, G3… и т.д. раз.
С таким же успехом можно умножить закон тяготения хоть на десять розовых слонов и после введения новых переменных утверждать, что без этих слонов мировое тяготение обойтись не может. Однако после совсем неформального сокращения уравнения на одинаковые множители, ни слонов, ни лишних (G) в законе тяготения не остаётся. Закон сохранения истины защищает однажды добытую истину, закреплённую в её уравнении. Пока выражение с любым новым параметром или параметрами в обеих его частях не закреплено в одной из частей в отдельном символе, как доказанная новая истина, старая истина сохранятся низменной, т.к. обязательное для истины упрощение выражения вернёт всё на свои места. Поэтому умножив закон тяготения на (G), но не закрепив это в новой переменной, Викулин ещё не погрешил против истины не только формально, но и физически, т.к. одинаковые множители лишние для уже добытой истины закона всемирного тяготения подлежат обязательному сокращению. Однако, как только он ввел новую переменную, закрепляющую в своём составе введённый множитель, то физически это уже новая истина, отличная от истины закона всемирного тяготения. Поясним сказанное на конкретных примерах, пусть даже не связанных конкретно с множителем (G). Итак, есть закон тяготения: F = G * M * m / r2 Умножим обе части закона тяготения на расстояние (S), которое для простоты учёта силы тяготения в пределах (S), примем много меньшим, чем (r): S * F = S * G * M * m / r2 Формально математически, как говорит В. Викулин, равенство не изменилось. Причём конкретно для закона всемирного тяготения не изменилось и физическое равенство, т.к. (S) является лишней переменной для истины закона тяготения и подлежит обязательному физическому и математическому сокращению. Но как только мы введём новую переменную в левой части уравнения, то физически мы получим уже не закон тяготения Ньютона, а новую физическую истину, но уже не для силы тяготения, а для работы силы тяготения: А = F * S = S * G * M * m / r2 При этом даже если (S) в правой части спрятать в новой переменной, например, (В = S * G * M), то новая истина не поменяется. Левая часть так и останется работой. А вот (В) превратится при этом в формально-математическую абстракцию, которая не имеет физического смысла. Точно так же произведение (F * G) и (G * M * m) в законе Викулина - это формально математическая абстракция, которая до введения новых переменных может быть легко ликвидирована сокращением на (G). При этом сила тяготения, как неваляшка вновь восстановит свою форму и свой физический смысл. Приведём другой пример. В классической физике есть физическая величина - момент силы. М = F * r = dL / dt = d (m * ω * r2) / dt Она получена, как работа тангенциальной силы вращательного движения на участке окружности, равном радиану (r), т.е. фактически умножением второго закона Ньютона на радиус. Однако в определении момента силы значится уже не окружное расстояние (r), а перпендикулярное силе плечо радиана (r). Это не соответствует ни правилу рычага, т.к. нет соотношения плеч и сил, ни работе, т.к. сила не работает в перпендикулярном ей направлении. При этом новая истина, допускающая такую замену и объясняющая физический смысл этой теперь уже не работы и не рычага, а так называемого момента силы, не существующего в природе, не доказана. Следовательно, остаётся только доказанная истина работы тангенциальной силы при наличии умножения второго закона Ньютона на радиус. Либо истина самого второго закона Ньютона при сокращении на радиус. Теперь приведём пример доказанной новой истины при умножении старой истины на какой-либо дополнительный множитель. Умножением второго закона Ньютона на время получаем новую истину - импульс или количество движения, что закреплено в математическом символе Р. F * t = m * V Раскроем силу в левой части: m * a * t = m * V Учитывая, что a * t = V, окончательно получаем. m * V = m * V. Тождество, а вместе с ним и новая истина доказана приведением обеих частей тождества к одинаковому виду. Осталось присвоить новой истине свой строго индивидуальный математический символ, заменив переменную (F) на переменную (Р). P = m * V Понятно, что для силы новая истина является ложью: F ≠ m * V = Р В соответствии с Законом Сохранения Истины для силы истина сохраняется при любых одинаковых множителях в обеих частях уравнения, но только до введения новой переменной (Р), которая закрепляет новое сочетание в виде новой истины. Таким образом, закон сохранения истины - это такой же равноправный и фундаментальный закон природы, как и все остальные законы сохранения природы! Математически закон сохранения истины можно записать следующим образом: Если А * в = f(x) * в и С = А * в, то А = f(x), А ≠ С, C ≠ f(x), где С - новая истина Викулин отмечает, что закон тяготения Ньютона в системе СИ корректен по условию задачи. Но это не полная правда. Он корректен в любой системе и вовсе не по условию задачи. Он корректен только потому, что в нём ровно столько (G), сколько заложено природой, т.е. он соответствует закону сохранения истины, в соответствии с которым уже установленную истину никакими дополнительными одинаковыми членами изменить невозможно. Потому что для установленной истины все не входящие в неё члены являются лишними, не обусловленными истиной природы. Установленную истину можно изменить, только доказательством новой истины для того же самого физического явления, т.е. только опровергнув старую истину. Гравитационная постоянная, которую сторонники системы (LT) объявили лишней сущностью, так никуда и не исчезла в предназначенном для неё могильнике – системе LT. Под видом новых переменных на гравитационную постоянную всего лишь была надета новая маска, но с сохранением природной физической сущности гравитационной постоянной, только и всего. Если сторонники системы (LT) считают, что в законе всемирного тяготения должно быть больше (G), чем одна, то они должны физически доказать это, т.е. они должны доказать, что их математика, как раз не формальная и соответствует истине природы. И только после этого они вправе перевести всю современную физику на новые переменные. Однако они этого, так и не доказали. А поскольку новые переменные Викулина имеют смысл для его доказательства только с дополнительным коэффициентом (G), причём в обеих частях уравнения, то все расчеты в системе LT идентичны расчётам в любой нормальной системе физических величин, т.к. одинаковые члены в соответствии с законом сохранения истины при любых расчётах непременно сокращаются. Причём это вовсе не перевод из одной системы в другую, как это хотят представить сторонники системы LT, это есть сохранение старой доброй истины в полном соответствии с законом сохранения истины. Но это и есть то самое строго математическое и физическое доказательство несостоятельности LT-системы, о невозможности которого в принципе, ошибочно говорит Викулин. Об абсурдности доводов сторонников системы LT свидетельствует также и следующее утверждение в приведённой выше цитате Викулина: «Меняется ли суть переименованных физических величин? Разумеется, нет, меняется только их численная величина и размерность». Этот ответ Викулина вовсе не «разумеется» сам собой, т.к. он противоречит убеждениям самих же LT-шников. В приведённой ранее цитате Ерохина для сторонников системы LT само собой разумелось совсем другое, а именно: «размерность физических величин определяет их суть» (см. выше). И хотя всё должно звучать наоборот, это, тем не менее, так же означает, что принципиально разная размерность должна отражать и принципиально разный смысл физических величин. Однако Викулин утверждает, что размерность и величина физической величины поменялись, а смысл нет!Ё! Где же здесь логика? С такой логикой система (LT) просто обречена стать очередным курьёзом в физике. Подведём итог: Во–первых, размерность физических величин определяется их сутью, о чём совершенно правильно говорит другой защитник системы LT В. Ерохин (см. выше). Это означает, что принципиально разная размерность должна отражать и принципиально разный смысл физических величин. Во–вторых, так называемые новые переменные системы LT получены путём умножения прежних переменных на (G), т.е. путём смешения двух разных физических величин. Это означает, что суть новой физической величины естественно отличается от сути образующих её величин. Соответственно доводы защитников LT о сохранении в их системе массы–материи, несмотря на смену её размерности, несостоятельны. Материя, конечно же, в природе и в физике сохраняется, но не в силу правомерности системы LT, а именно благодаря её несостоятельности. Ну, и в третьих, поскольку все новые величины содержат в себе гравитационную постоянную, то вопреки заявлениям защитников системы LT об упразднении гравитационной постоянной, она является далеко не лишней сущностью, в том числе и в системе LT, что свидетельствует об иллюзорности, т.е. о несостоятельности системы LT, в основу которой положено отсутствие в природе гравитационной постоянной. | |
Просмотров: 1151 | Комментарии: 2 | |
Всего комментариев: 2 | |
| |