MENU
Главная » Статьи » Физика и математика » Мои статьи

Определение силы и ускорения Кориолиса при помощи мерной динамики вращательного движения 4.

Яндекс.Метрика

Теперь найдём физическое значение статической составляющей поддерживающей силы, которая компенсирует истинную силу Кориолиса в диапазоне изменения линейной скорости от (Vли = ω2 * r2) до (Vлн = ω1 * r1). Для определения граничных угловых скоростей приведённого вращательного движения для статической составляющей силы Кориолиса разделим граничные линейные скорости (Vли = ω2* r2) и (Vлн = ω1* r1), на радиус образцового вращательного движения.

ω1рад = ω2 * r2 / rо

ω2рад = ω1 * r1 / rо

Индекс статической составляющей (С) для простоты опущен.

Приращение угловых скоростей образцового вращательного движения равно:

Δωрад = ω1 * r1 / rо – ω2 * r2 / rо

Подставив в (4.2.3) приращение угловой скорости поворотного движения для статической силы Кориолиса, пересчитанное к образцовому радиану получим физическое выражение для статической силы Кориолиса:                

Fк = m * rо * (ω1 * r1 / rо– ω2 * r1 / rо) / Δt             (4.2.9)

Теперь приведём выражение (4.2.9) к традиционному виду. Для этого преобразуем приращение угловой скорости следующим образом:

Δωрад = ω1 * r1 / rо– ω2 * r2 / rо =

= ω1 * r1 / rо - r2 * ω1 * r12 / (r2* rо) = ω1 * r1 / rо - ω1 * r12 / (r2 * rо) =

= ω1 * (r1 * r2 - r12) / (r2 * rо) = ω1 * r1 * (r2 - r1) / (r2* rо)

Но:

r2 - r1 = Δr = Vr * Δt

Тогда

Δωрад = ω1 * r1 * Vr * Δt / (r2 * rо)

Выразим радиусы (r1) и (r2) через радиальную скорость и учтём, что (ω1 = ω):

r1 = Vr * t

r2 = Vr * (t + Δt)

ω1 = ω

Тогда

Δωрад = ω * Vr2 * t * Δt / (rо *  Vr * (t + Δt)) =

= ω * Vr * t * Δt / (rо * (t + Δt))

При малом (Δt):

 t + Δtt

Тогда:

Δωрад ω * Vr * Δt / rо                                                  (4.2.10)

Подставим (4.2.10) в (4.2.9):

Fкс ≈ m * rэ * ω * Vr * Δt / rэ * Δt ≈ m * Vr * ω               (4.2.11)

Расчёт истинной силы Кориолиса полностью аналогичен расчёту статической силы Кориолиса, причем, в том же самом диапазоне изменения угловой и линейной скоростей. Естественно, что аналогичным будет и результат расчёта истинной силы Кориолиса. Поэтому мы не будет его приводить подробно, а лишь напомним, что истинная сила Кориолиса направлена противоположно поддерживающей силе, следовательно, она полностью компенсирует статическую составляющую поддерживающей силы.

Таким образом, мы подтвердили нашу версию явления Кориолиса строгим математическим расчётом.

При приведении значений полной и статической силы Кориолиса к классическому виду мы использовали условные допущения, что в малом интервале времени должно выполняться примерное равенство (t + Δt / 2 ≈ t + Δt) и (t + Δtt) соответственно. Для истинной силы Кориолиса, вывод которой абсолютно аналогичен выводу статической составляющей, также предполагается допущение (t + Δtt). В точности соответствует половине классической силы Кориолиса только динамическая составляющая полного силового напряжения Кориолиса в нашей версии. Это математическая причина неточного соответствия составляющих напряжения Кориолиса кратности «2» (см. Рис. 4.2.1).

Наш расчёт по умолчанию приведён для радиального движения от центра вращения, когда конечный радиус (r2) определяется по формуле (r2 = Vr * (t + Δt)). В этом случае принятые условно математические допущения приводят к завышенному результату расчётов. При радиальном движении к центру вращения радиус (r2) будет определяться по формуле (r2 = Vr * (t - Δt)). В этом случае допущения приведут к заниженному результату (см. Рис. 4.2.1).

Рис. 4.2.1

Физическая причина указанного несоответствия связана с неточным соответствием теоретического соотношения угловых скоростей в зависимости от обратного соотношения квадратов радиусов. Дело в том, что теоретическое соотношение угловых скоростей в процессе поворотного движения неправомерно принимается в классической физике, как их соотношение в установившихся равномерных вращательных движениях до и после поворотного движения. В реальной действительности в процессе поворотного движения теоретическое соотношение не соблюдается.

Это связано со сдвигом фазы вращения линейной скорости спирали во время радиального движения по отношению к линейной скорости виртуального переносного вращения. Линейная скорость спирали в зависимости от направления радиального движения либо отстаёт по фазе от поворота линейной скорости виртуального равномерного переносного вращения на текущем радиусе при радиальном движении от центра вращения, либо опережает её при движении к центру вращения. Соответствующим образом ведёт себя и текущая угловая скорость в процессе поворотного движения.

При радиальном движении от центра вращения текущая угловая скорость уменьшается по сравнению с угловой скоростью установившегося вращения на этом же радиусе, а при движении к центру вращения увеличивается. В результате сила Кориолиса при радиальном движении от центра вращения уменьшается по сравнению с теоретическим значением, рассчитанном исходя из теоретического соотношения угловых скоростей, а при движении к центру вращения увеличивается.

Необходимый до теоретического значения дополнительный поворот линейной скорости спирали в ту или иную сторону осуществляется только после прекращения радиального движения за счёт дополнительных затрат внешней радиальной силы. При этом линейная скорость спирали становится линейной скоростью установившегося вращательного движения. Причём при радиальном движении от центра вращения линейная скорость установившегося вращательного движения скачкообразно увеличивается, что приводит к увеличению угловой скорости, а при движении к центру вращения уменьшается, что приводит к уменьшению угловой скорости.

В начало

Категория: Мои статьи | Добавил: aaa2158 (11.09.2017)
Просмотров: 62 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar