MENU
Главная » Статьи » Физика и математика » Мои статьи

Определение силы и ускорения Кориолиса при помощи мерной динамики вращательного движения 3.

Яндекс.Метрика

Сократим полученное выражение для силы Кориолиса на (Vr * rрад):

Fк = (m * Vr * ω * (2 * t * Δt + Δt2) / (t + Δt)) / Δt

Преобразуем полученное выражение следующим образом:

Fк = (m * Vr * ω * 2 * Δt * (t + Δt / 2) / (t + Δt)) /Δt

После сокращения на (Δt) получим:

Fк = 2 * m * Vr * ω * (t + Δt / 2) / (t + Δt)

Для малых значений (Δt) в некотором приближении можно допустить:

t + Δt / 2 ≈ t + Δt

Тогда после сокращения выражение для полной силы Кориолиса примет вид:

Fк ≈ 2 * m * Vr * ω * (t + Δt / 2) / (t + Δt)

≈ 2 * m * Vr * ω                                                                       (4.2.6)

Мы произвели расчёт в полном диапазоне изменения угловой скорости (Δωрад = ω2 рад - ω1рад), искусственно дождавшись пока истинная сила Кориолиса доведёт её до значения (-ω1рад), что заведомо меньше начальной неизменной угловой скорости, т.е. точки отсчёта, от которой считается классическая сила и ускорение Кориолиса. А затем определили закручивающую силу от этой отметки при неизменной угловой скорости, но растущей линейной скорости, что в мерной динамике в любом случае означает увеличение угловой скорости. По-другому определить непроявленные движения просто невозможно. Для того чтобы определить параметры отсутствующего в реальной действительности движения необходимо сначала дать ему проявиться, хотя бы мысленно, что мы и сделали выше.

Движение от исходной угловой (линейной) скорости до угловой (линейной) скорости которую приобретает вращающаяся система в отсутствие поддерживающей силы, и обратно до исходной угловой скорости в присутствии поддерживающей силы, было учтено в нашем расчёте именно мысленно. В реальной действительности этого движения нет потому, что его компенсирует часть поддерживающей силы. А образующееся при этом статическое напряжение в составе классической силы Кориолиса не имеет никакого отношения к динамике поворотного движения.

Тем не менее, эта статическая часть и приводит к удвоению классической силы Кориолиса, которое в классической физике связывают с центростремительным ускорением вращения вектора радиальной скорости именно потому, что центростремительное ускорение в классической физике не имеет линейного приращения движения. Этот факт хорошо согласуется с классическим значением ускорения Кориолиса, полученным с помощью классической лже динамики вращательного движения.

Приведённый выше вывод основан на реальной структуре реальных и потенциальных (мысленных) приращений поворотного движения, из которой следует, что силовое напряжение Кориолиса состоит из двух составляющих. Это статическая поддерживающая сила, которая не вызывает геометрического ускорения, т.к. ей противостоит истинная сила Кориолиса и динамическая поддерживающая сила, которая и обеспечивает реальное геометрическое ускорение Кориолиса. Это можно подтвердить, определив значения всех составляющих поддерживающей силы, на основе мерной динамики вращательного движения.

Итак, определим динамическую составляющую поддерживающей силы, реакция на которую и есть классическая сила Кориолиса. Как показано выше динамическая составляющая силы Кориолиса (Fкд→) обеспечивает реальное изменение линейной скорости в диапазоне (Vлн = ω1*r1) (Vлд = ω1*r2). Граничные угловые скорости приведённого вращения (ω1рад) и (ω2рад) для этих линейных скоростей равны:

ω1рад = ω1 * r1 / rо

ω2рад = ω1 * r2 / rо

Тогда:

Δωрад = ω1 * r2 / rо- ω1 * r1 / rо

Для простоты подстрочный индекс для динамической силы Кориолиса (Д) опущен.

Подставив приращение угловой скорости поворотного движения для динамической силы Кориолиса в (4.2.3) получим выражение для динамической силы Кориолиса:

Fк = m * rо * (ω1 * r2 / rо - ω1 * r1 / rо) / Δt                         (4.2.7)

Теперь приведём выражение (4.2.7) к традиционному виду аналогично приведению к традиционному виду полной силы Кориолиса (см. выше).

Выразим граничные радиусы через радиальную скорость:

r1 = Vr * t

r2 = Vr * (t + Δt)

тогда:

Δωрад = ω1 * r2 / rо  - ω1 * r1 / rо = ω1 * Vr * (t + Δt - t) / rо =

= ω1 * Vr * Δt / rо

Поскольку

ω1 = ω,

то выражение для приращения угловой скорости примет вид:

Δωрад = ω * Vrt / rо

После подстановки найденного приращения угловой скорости (Δωо) в выражение (4.2.7) и сокращений получим физическое значение динамической силы Кориолиса:

Fпд = m * rо * ω * Vr * Δt / rо* Δt = m * Vr * ω         (4.2.8)

Как видно из полученного выражения, динамическая поддерживающая сила (4.2.8) сообщает геометрическое, т.е. реальное приращение классическому поворотному движению с неизменной угловой скоростью вдвое меньшее, чем классическое ускорение Кориолиса.

Далее

 

Категория: Мои статьи | Добавил: aaa2158 (11.09.2017)
Просмотров: 57 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar