MENU
Главная » Статьи » Физика и математика » Мои статьи

Определение силы и ускорения Кориолиса при помощи мерной динамики вращательного движения 1.

Яндекс.Метрика

Поскольку угловая скорость переносного вращения в соответствии с «физическим смыслом» классической модели явления Кориолиса поддерживается неизменной, - Фейнман определяет силу Кориолиса дифференцированием момента силы Кориолиса в предположении, что переменной величиной является радиус. В классической модели явления Кориолиса с постоянной угловой скоростью просто больше нечего дифференцировать.

Однако переносное движение с изменяющимся радиусом представляет собой совокупность виртуальных вращательных движений разного вида, образующих движение по разным окружностям, которые не могут описываться одним общим уравнением динамики вращательного движения! По этой причине поворотное движение с изменяющимся радиусом нельзя дифференцировать не только по радиусу, но и по угловой скорости!

Как отмечалось выше в главе 3.5.2 и в начале настоящей главы, для того чтобы правильно определить силу Кориолиса необходимо привести поворотное движение, представляющее собой переходную спираль между вращательными движениями разного вида по радиусу, к эквивалентному вращательному движению единого вида, осуществляющемуся в единой системе координат с единым масштабом, т.е. к вращательному движению с постоянным эквивалентным радиусом. Таким эквивалентным вращательным движением является мера пространства вращательного движения – мерный радиан, имеющий размерность (rо = rрад = 1 [мрад или мо]).

Рассмотрим поворотное движение с относительным радиальным движением, направленным во внешнюю сторону от центра вращения.

Введём обозначения.

r1 – начальный радиус поворотного движения

r2 – конечный радиус поворотного движения

ω1 – исходная угловая скорость

ω2 – угловая скорость в отсутствие поддерживающей силы

- направление силы, за счёт которой происходит уменьшение скорости

→ - направление силы, за счёт которой происходит увеличение скорости

Fки истинная сила Кориолиса (это обычная реальная сила, которая замедляет вращение при радиальном движении от центра вращения в отсутствие поддерживающей силы)

Fп – поддерживающая сила, реакция на которую и принимается за классическую силу Кориолиса

Fпс – статическая (уравновешенная) часть поддерживающей силы

Fпд – динамическая часть поддерживающей силы

Vлн – начальная линейная скорость исходного вращательного движения (Vлн = ω1 * r1)

Vли – истинная линейная скорость, которую тело приобретает под действием истинной силы Кориолиса в отсутствие поддерживающей силы (Vли = ω2 * r2)

Vлд – динамическая линейная скорость, которую тело приобретает под воздействием динамической составляю0щей поддерживающей силы (Vлд = ω1 * r2)

Любая сила определяется не только геометрическим приращением движения материальной точки, но и силовыми затратами на преодоление сил противодействия движению. Следовательно, для определения полного силового напряжения Кориолиса (Fп) необходимо учитывать не только реальную динамику приращения поворотного движения, но и статическое напряжение, связанное с преодолением поддерживающей силой сопротивления истинной силы Кориолиса.

За счёт истинной силы Кориолиса (Fки) линейная скорость начальная должна уменьшится до истинной линейной скорости (Vли←Vлн←Fки). Чтобы этого не произошло поддерживающая сила (Fп) должна компенсировать истинную силу Кориолиса, т.е. увеличить истинную линейную скорость до начальной линейной скорости. При этом уравновешивающая часть поддерживающей силы станет её статической составляющей (Fпс→Vли→Vлн). А поскольку в образовании статического уравновешенного напряжения участвуют две силы, то весь уравновешивающий процесс схематично можно выразить следующим образом (Fпс→Vли ↔ Vлн ←Fки).

После уравновешивания истинной силы Кориолиса статической частью поддерживающей силы линейная скорость будет поддерживаться на уровне начальной линейной скорости на каждом текущем радиусе. Однако поскольку радиус у нас непрерывно увеличивается, то угловая скорость по-прежнему будет уменьшаться, хотя и с меньшей интенсивностью. Чтобы этого не произошло необходимо дальнейшее увеличение линейной скорости до значения динамической линейной скорости (Vлд). Часть поддерживающей силы, направленной на это, мы обозначили, как динамическую поддерживающую силу, которая будет увеличивать линейную скорость всей области статического напряжения:

Fпд→(Fпс→Vли↔Vлн←Fки)Vлд

Понятно, что сонаправленные составляющие поддерживающей силы и образуют её полную величину или полное напряжение Кориолиса:

Fпд→ + Fпс→ = Fп

Однако в динамике поворотного движения участвует только динамическая составляющая поддерживающей силы. Именно реакция на динамическую часть поддерживающей силы и есть сила инерции Кориолиса. Рассчитаем полное напряжение Кориолиса и все его составляющие, т.е. составляющие поддерживающей силы при помощи мерной динамики вращательного движения. Начнём с полной поддерживающей силы или полного силового напряжения Кориолиса.

Абсолютная величина полного силового напряжения Кориолиса с учётом истинной силы Кориолиса определяется изменением линейной скорости от (Vли = ω2 * r2) до (Vлд = ω1 * r2). Зная граничные значения линейной скорости поворотного движения (Vли = ω2 * r2) и (Vлд = ω1 * r2), определим граничные угловые скорости приведённого вращения (ω1рад) и (ω2рад) для этих линейных скоростей, как частное от деления граничных линейных скоростей на меру пространства во вращательном движении (rо).

ω1рад = ω2 * r2 / rо

ω2рад = ω1 * r2 / rо

Отсюда приращение угловой скорости эквивалентного вращательного движения для определения полной силы Кориолиса равно:

Δωрад = ω2 рад  -  ω1рад = ω1 * r2 / rо - ω2 * r2 / rо                            (4.2.1)

Тогда уравнение динамики вращательного движения, приведённого к общему эквиваленту - мерному радиану примет вид:

Fрад = - Fк = ((m * rо * Δωрад) / Δt)                                                           где

Fк: сила Кориолиса.

С учётом (4.2.1) получим:

Fк = m * (ω2 * r2 – ω1 * r2 ) / Δt                                                         4.2.2)

Но для простоты вернёмся пока к прежнему выражению:

Fк = (m * rо * Δωрад) / Δt                                                                 (4.2.3)

Поскольку

Δωрад / Δt = εрад,

то после дифференцирования выражения (4.2.3) в предположении, что переменной дифференцирования является (Δωо) сила Кориолиса определится также следующим выражением:

Fк = m * rо* εрад                                                                                             (4.2.4)

Как видно выражение (4.2.3), (4.2.4) отличаются от привычной традиционной формулы для силы Кориолиса. В них отсутствует множитель «2», а также радиальная скорость относительного движения и угловая скорость переносного вращения. Зато присутствует радиус, который нельзя дифференцировать по времени, т.к. по физическому смыслу динамики вращательного движения это величина постоянная.

Далее

Подробнее см. Астахов А. А. "Физика движения", гл. 4.1

Категория: Мои статьи | Добавил: aaa2158 (15.06.2016)
Просмотров: 216 | Рейтинг: 0.0/0
Всего комментариев: 0
avatar