MENU

 

Яндекс.Метрика

назад

Сила Кориолиса в природе.

Самый простой пример использования силы Кориолиса — это эффект ускорения кручения танцоров. Чтобы ускорить свое вращение, человек может начать крутиться с широко разведёнными в стороны руками, а затем — уже в процессе — резко прижать руки к туловищу, что вызовет увеличение круговой скорости (согласно закону сохранения момента импульса). Эффект силы Кориолиса проявится в том, что для такого движения руками придётся прикладывать усилия не только по направлению к телу, но и в направлении по вращению. При этом возникает ощущение, что руки отталкиваются от чего-то, при этом ещё больше ускоряясь.

Сила Кориолиса также проявляется, например, в работе маятника Фуко. Кроме того, поскольку Земля вращается, то сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса направлена вправо от движения, поэтому правые берега рек в Северном полушарии более крутые — их подмывает вода под действием этой силы (см. Закон Бэра). В Южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за вращение циклонов и антициклонов.

Вопреки расхожему мнению, маловероятно, что сила Кориолиса полностью определяет направление закручивания воды в водопроводе — например, при сливе в раковине. Хотя в разных полушариях она действительно стремится закручивать водяную воронку в разных направлениях, при сливе возникают и побочные потоки, зависящие от формы раковины и конфигурации канализационной системы. По абсолютной величине создаваемые этими потоками силы превосходят силу Кориолиса, поэтому направление вращения воронки как в Северном, так и в Южном полушарии может быть как по часовой стрелке, так и против неё.

***

Энциклопедия «Элементы большой науки», «Природа Науки»

Эффект Кориолиса.

Представьте, что кто-то, находясь на Северном полюсе, бросил мяч кому-то, кто находится на экваторе. Пока мяч летел, Земля немного повернулась вокруг своей оси, и ловящий успел сместиться к востоку. Если бросающий, целясь мячом, не учел этого движения Земли, мяч упал западнее (или левее) ловящего. С точки зрения человека на экваторе получается, что мяч летел левее, чем надо, с самого начала — как только его выпустил из рук бросающий, — и до тех пор, пока не приземлился.

Согласно законам механики Ньютона, чтобы движущееся прямолинейно тело отклонилось от изначально заданной траектории, на него должна действовать какая-то внешняя сила. Значит, ловящий на экваторе должен сделать вывод, что брошенный мяч отклонился от прямолинейной траектории под действием некоей силы. Если бы мы смогли посмотреть на летящий мяч из космоса, мы бы увидели, что на самом деле никакая сила на мяч не действовала. Отклонение же траектории было вызвано тем, что Земля успела повернуться под мячом, пока он летел по прямой. Таким образом, действует в подобной ситуации какая-то сила или нет, — это целиком зависит от системы отсчета, в которой находится наблюдатель.

И подобное явление неизбежно возникает, когда есть какая-нибудь вращающаяся система координат — например, Земля. Для описания этого явления физики часто используют выражение фиктивная сила, имея в виду, что сила «реально» отсутствует, просто наблюдателю во вращающейся системе отсчета кажется, что она действует (другой пример фиктивной силы — это центробежная сила). И противоречий здесь нет никаких, поскольку оба наблюдателя единодушны относительно реальной траектории полета мяча и уравнений, ее описывающих. Расходятся они лишь в терминах, которые они используют для описания этого движение.

 Нетрудно понять, что в Северном и Южном полушариях сила Кориолиса действует на движущееся тело в прямо противоположных направлениях. Именно поэтому в Северном полушарии вихри циклонов кажутся закрученными против часовой стрелки, а в Южном — по часовой стрелке. Отсюда происходит бытующее в народе убеждение, что вода в канализационных отверстиях ванн и раковин в двух полушариях вращается в противоположных направлениях, — якобы это обусловлено эффектом Кориолиса. На самом же деле, хотя и верно, что сила Кориолиса действует противоположно в двух полушариях, направление закручивания воды в сливной воронке лишь отчасти определяется этим эффектом.

Дело в том, что вода долгое время течет по водопроводным трубам, при этом в потоке воды образуются течения, которые, хоть их и трудно увидеть простым глазом, продолжают закручивать струю воды и тогда, когда она льется в раковину. Кроме того, когда вода уходит в сливное отверстие, могут создаваться похожие течения. Именно они определяют направление движения воды в воронке, поскольку силы Кориолиса оказываются гораздо слабее этих течений. В обычной жизни направление закручивания воды в сливной воронке в северном и южном полушариях больше зависит от конфигурации канализационной системы, чем от действия природных сил.

Однако все-таки нашлась группа экспериментаторов, которой хватило терпения повторить этот опыт в «чистых» условиях. Они взяли идеально симметричную раковину сферической формы, устранили канализационные трубы, позволив воде проходить сквозь сливное отверстие свободно, оборудовали сливное отверстие автоматической заслонкой, которая открывалась лишь после того, как в воде успокаивались любые остаточные токи, — и увидели-таки эффект Кориолиса в действии! Несколько раз им даже удалось увидеть, как вода сначала под слабым внешним воздействием закручивалась в одну сторону, а затем силы Кориолиса брали верх, и направление спирали менялось на противоположное!

***

Ещё раз о физическом смысле ускорения Кориолиса.

А. Н. Матвеев в работе «Механика и теория относительности», 3-е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003 г., допущенной в качестве учебника для студентов высших учебных заведений определяет ускорение Кориолиса, как  изменение скорости тела, движущегося радиально внутри вращающейся системы в направлении, перпендикулярном радиусу вращения. Это общепринятое в классической физике определение ускорения Кориолиса в рассматриваемом варианте. На стр. 404 Матвеев пишет: «Скорость вдоль радиуса Vr изменяется за это время (Δt) по направлению, а скорость Vn, перпендикулярная радиусу, изменяется как по направлению, так и по абсолютному значению. Полное изменение составляющей скорости, перпендикулярной радиусу, равно

ΔVn =Vn1 Vn2 * cos α + Vr * Δα ≈

≈ ω * Δr + Vr *  ω  Δt                                                       (66.3)

где учтено, что cos α ≈ 1

Следовательно, кориолисово ускорение

wк = ω * Δr / dt + Vr * ω = 2 *  Vr *  ω».

Вообще говоря (cos α) учитывать вовсе не обязательно. Поскольку поворот вектора переносной скорости происходит под действием переносного центростремительного ускорения, не имеющего отношения к поворотному ускорению Кориолиса, то их можно совмещать по направлению напрямую без учета (cos α). Следовательно, минимизация интервала времени поворота здесь абсолютно не причем. Но это не самый главный недостаток вывода Матвеева. Всё намного серьёзнее и связано с неправильными физическими представлениями классической физики о явлении Кориолиса.

Из выражения (66.3) следует, что ускорение Кориолиса это изменение абсолютной скорости в направлении перпендикулярном радиусу, которое обеспечивается двумя самостоятельными независимыми ускорениями:

1. Ускорением, характеризующим приращение линейной скорости переносного вращения по абсолютной величине;

2. Ускорением, характеризующим приращение радиальной скорости относительного движения по направлению.

Фактически это означает, что приращение линейной скорости в направлении переносного вращения по абсолютной величине никак не сказывается на приращении радиальной скорости относительного движения по направлению, и наоборот - центростремительное ускорение, характеризующее изменение радиальной скорости относительного движения по направлению не имеет никакой корреляции с приращением линейной скорости переносного вращения по абсолютной величине. Однако в реальной действительности эти приращения тесно взаимосвязаны между собой, что проявляется, хотя бы в их равенстве по абсолютной величине. Более того можно показать, что это равенство не случайно, т.к. они представляют собой одну и ту же физическую величину.

На рисунке (4.1.1) показано, что годограф вектора радиальной скорости, определяющийся вдоль траектории переносного вращения, совпадает с годографом вектора переносной скорости, который в этом случае также определяется вдоль траектории переносного вращения, т.е. фактически каждая точка годографа радиальной скорости, изменяющейся по направлению, одновременно является и точкой годографа переносной скорости, изменяющейся по абсолютной величине. Рисунок (4.1.1) принципиально полностью идентичен рисунку (159), приведенному в работе Матвеева (см. фотокопии выше). B нём лишь выполнены некоторые дополнительные построения, которые у Матвеева отсутствуют. 

Рис. 4.1.1

Вектор переносной скорости (Ve1) на рисунке (4.1.1) перенесен из начальной точки (А) в точку (В) так чтобы стрелки векторов переносной и относительной скоростей совместились в точке (В). Затем вся полученная связка (Vr1;Vе1) параллельно самой себе перенесена в точку (А1), соответствующую начальному радиусу. В результате стрелки векторов переносной и относительной скоростей оказываются в точке (В1), из которой с учетом начальной скорости переносного вращения и необходимо определять приращение этих скоростей. Далее связка (Vr1;Vе1) поворачивается влево по рисунку в соответствии с направлением переносного вращения до совмещения с угловым положением повернувшегося радиуса (r2).

При этом стрелки вектора (Vr1) и вектора (Vе1), совмещённые в одной общей точке формируют одни и те же точки искомого приращения поворотной скорости в виде общего годографа (ΔVпов=ΔVr=ΔVe). Причём вектор (Vr1), как ему и положено в поворотном движении поворачивается вместе с радиусом, а вектор (Vе1), как ему и положено движется вдоль окружности переносного вращения. Некоторое графическое расхождение годографа (ΔVr) с годографом (ΔVe) на рисунке (4.1.1) объясняется только несоответствием масштаба общей кинематики поворотного движения, и реального масштаба, в котором осуществляется физический механизм поворотного движения. 

В реальном физическом масштабе формирования одного цикла ускорения Кориолиса стрелки вектора (Vr1) и вектора (Vе1) не движутся ни по траектории переносного вращения, ни по траектории поворота стрелки вектора (Vr1). На уровне физического механизма нет собственно и самих стрелок (Vr1 и Vе1) в том обобщённом виде, в котором они изображены на рисунке (4.1.1). Зато на уровне физического механизма есть общее приращение движения по очень сложной траектории, которую невозможно изобразить графически во всех деталях. Академически же мы можем это достаточно достоверно отразить только через общий годограф в очень малом интервале времени.

На нашем рисунке (4.1.1) для наглядности показан просто огромный интервал времени. Поэтому графическое расхождение годографов столь хорошо заметно. Однако в реальном масштабе времени изобразить обобщённую кинематику любого сложного движения практически невозможно. Поэтому мы преследовали цель показать только принципиальное совпадение приращения переносной скорости по абсолютной величине и относительной скорости по направлению, а это на рисунке (4.1.1) отображено с достаточной достоверностью. Во всяком случае ниже мы ещё не раз подтвердим этот вывод с разных сторон.

В частности равенство годографов (ΔVпов = ΔVr = ΔVe), показанное на рисунке 4.1.1 допускает возможность его геометрической проверки через годограф абсолютной скорости (ΔVа). Очевидно, что годограф абсолютной скорости является геометрической суммой годографа переносной скорости (ΔVпер) и годографа поворотной скорости (ΔVпов). На рисунке 4.1.2 показано, что сумма годографа переносной скорости и годографа поворотной скорости в нашей версии (ΔVпов = ΔVr = ΔVe) принципиально равна годографу абсолютной скорости. 

Рис. 4.1.2

Конечно, такая криволинейная векторная геометрия годографов несколько некорректна, т.к. криволинейных векторов в классической физике не существует. Однако в очень малом интервале времени этот некорректный с точки зрения классической физики треугольник годографов переносной скорости (ВС), абсолютной скорости (АС) и поворотной скорости (АВ) практически эквивалентен треугольнику прямых векторов. При этом величины углов треугольника, которые при распрямлении сторон безусловно изменятся, для нас не имеют значения. Главное, что принципиально он реально отражает действительность, т.к. на рисунке видно, что при любых графических искажениях векторной геометрии при распрямлении криволинейного треугольника годографов (АВС), его сторона (АВ) ни при каких обстоятельствах не превысит равенство (ΔVпов = ΔVr = ΔVe) вдвое.

Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически, что будет очередным подтверждением единства годографов переносной и относительной скорости (см. Рис. 4.1.1).

Приращение радиальной скорости относительного движения по направлению равно:

ΔVr =  Vr * Δα  = Vr * ω * Δt

Это выражение соответствует третьему члену выражения (66.3)

Произведение (Vr * Δt) в выражении для (ΔVr) есть не что иное, как изменение радиуса переносного вращения (Δr). Тогда выражение для (ΔVr) можно записать в виде:

ΔVr = Vr * Δα  = Vr * ω * Δt = (Vr * Δt) * ω  =  Δr * ω

Но  (Δr * ω) есть не что иное, как прирост линейной скорости переносного движения в связи с изменением радиуса переносного вращения:

ΔVл = r2 * ω – r1 * ω = (r2 - r1) * ω  =  Δr * ω

Тогда:

ΔVr = ΔVл

Аналогичным образом можно показать, что прирост абсолютной скорости в направлении линейной скорости переносного вращения по абсолютной величине есть не что иное, как прирост радиальной скорости относительного движения по направлению.

ΔVл = Vn2 – Vn1 = ω * r2 – ω * r= ω * Δr = ω * (Vr * Δt) =

= Vr * (ω * Δt) = Vr * Δα =  ΔVr

То есть:

ΔVл = ΔVr

Следовательно, ускорение Кориолиса (wк) можно выразить через знак соответствия (≡), обозначающий не просто математическое равенство, а одну и ту же физическую величину. Если такого знака нет в математике, то его следует ввести, поскольку подобных ситуаций в физике предостаточно.

wк = Vл / Δt ΔVr / Δt) = ω * Vr

Как это ни парадоксально этот же самый математический вывод в классической физике приводится как подтверждение классической модели поворотного ускорения, а не как выражение одного и того же поворотного ускорения через взаимосвязь углового и линейного перемещения. Однако математическое равенство означает, прежде всего, идентичность физических величин, но никак не их кратность.

Из количественного математического описания физических явлений нельзя делать однозначные физические выводы. Самостоятельные независимые ускорения теоретически могут быть равны между собой количественно, хотя для существования такого равенства в разных самостоятельных движениях даже в течение достаточно непродолжительного времени необходимо невероятное стечение сопутствующих обстоятельств. Полное же совпадение математических формул ускорений, в которых присутствуют одни и те же базовые физические величины в соответствии с законом сохранения истины (см. гл. 2) должно, прежде всего, свидетельствовать о том, что речь идет об одной и той же физической величине. Следовательно, в классическом ускорении Кориолиса одна и та же физическая величина, скорее всего, учтена дважды.

Для всех без исключения криволинейных движений в природе существует только один физический механизм изменения движения по направлению (см. гл.3.3). В этом механизме можно отыскать любые элементы поворотного движения. Например, в рассмотренном ранее в главе (3) вращательном движении проекция вектора линейной скорости, изменяющегося как по величине, так и по направлению на радиальное направление так же, как и в поворотном движении образует радиальное ускоренное движение. Однако при этом никто не утверждает, что центростремительное ускорение состоит из двух независимых ускорений - ускорения по изменению направления линейной скорости вращательного движения и линейного радиального ускорения. Нет никаких оснований утверждать это и в отношении поворотного ускорения, которое, по-видимому, также как и ускорение вращательного движения формируется из элементарных отражений.

Как это ни странно однотипные по своей физической сущности обобщенные академические ускорения поворотного и вращательного движения имеют в классической физике совершенно разный физический смысл. Классическое центростремительное ускорение ассоциируется в классической физике с единым линейным ускорением, направленным к центру вращения. А физически однотипное ему ускорение Кориолиса, как это ни странно, раскладывается на две одинаковые по абсолютной величине линейные составляющие в одном и том же направлении, которые вопреки всякой логике и законам природы якобы самостоятельно, т.е. независимо друг от друга определяют приращение разных видов движения. И тем более странно, что во втором классическом варианте проявления ускорения Кориолиса при окружном относительном движении центростремительное ускорение равномерного вращательного движения названо в классической физике ускорением Кориолиса, хотя однотипные – вовсе не значит, одинаковые (см. гл. 4.3).

В классической модели явления Кориолиса истинная сила Кориолиса, которая совместно с поддерживающей силой обеспечивает статическую составляющую силы Кориолиса, отсутствует (см. гл. 3.5.2). Но видимо опытные данные о величине силового напряжения Кориолиса в физике всё же имеются. Может быть поэтому, для того чтобы оправдать удвоенную по сравнению с реальным линейным геометрическим приращением поворотного движения величину классической силы Кориолиса и была придумана небылица о присутствии в составе классического ускорения Кориолиса двух одинаковых по абсолютной величине и по направлению составляющих.

Специфика центростремительного ускорения в классической модели вращательного движения состоит в том, что оно не сообщает линейного приращения движения в направлении своего действия. Поэтому если ввести центростремительное ускорение в состав ускорения Кориолиса, то приращение поворотного движения в прямом направлении преобразования напряжение-движение, не изменится. Но центростремительная сила для образования вращательного движения в классической модели вращательного движения, безусловно, имеется. По этой причине центростремительное ускорение в составе ускорения Кориолиса идеально подходит для подгонки классической модели явления Кориолиса к опытным данным о величине классического напряжения Кориолиса, если таковые имеются.

Напряжение Кориолиса действительно вдвое больше результата прямого преобразования напряжение-движение. Следовательно, центростремительная составляющая ускорения Кориолиса позволяет классической физике без каких-либо видимых парадоксов подогнать удвоенное по отношению к реальному прямому ускоренному перемещению тел напряжение Кориолиса и два ускорения - в одном геометрическом перемещении. А может быть, классическая физика безо всякого лукавства действительно считает, что динамика поворотного движения соответствует полной величине классического ускорения Кориолиса? Нам это неизвестно, да и неважно, т.к. в любом случае такая динамика не соответствует действительности.

Мы уже неоднократно отмечали, что на макроуровне в равномерном диаметрально уравновешенном вращательном движении ускорение, как таковое в каком-либо направлении действительно отсутствует. А вот при таком же равномерном движении по окружности отдельной материальной точки ускорение за счёт активных центростремительных сил, конечно же, есть, т.к. в этом случае центростремительные силы не уравновешены. Следовательно, в классической модели явления Кориолиса, в которой вращение вектора относительной скорости неуравновешенное, помимо затрат на приращение вектора скорости переносного вращения по абсолютной величине должны чётко обнаруживать себя отдельные затраты и на диаметрально неуравновешенное вращение вектора радиальной скорости. Даже если такое приращение движения осуществляется не в прямом направлении преобразования напряжение-движение (см. гл. 1.2) его всегда можно обнаружить через годограф изменяемой скорости.

Таким образом, для того, чтобы показать, что приращение переносной скорости по абсолютной величине и приращение относительной скорости по направлению это одна и та же физическая величина, достаточно показать, что в классическом поворотном движении нет этих двух самостоятельных приращений, как нет и двойных затрат на реальную динамику поворотного движения. Это общее приращение двух скоростей, что мы и проиллюстрировали на рисунке (4.1.1.). Ещё одно подтверждение нашей версии явления Кориолиса напрямую следует из физического механизма образования ускорения Кориолиса, который мы поясним с помощью рисунка (Рис 4.1.3).

Радиальное движение может изменить своё направление только при взаимодействии тела с вращающимся радиусом, когда он в процессе вращения изменит своё угловое положение по отношению к первоначально заданному в одном фиксированном направлении прямолинейному радиальному движению. При этом взаимодействие тела с радиусом будет происходить по типу отражения (см. Рис 4.1.3, положение 2), в котором и происходит изменение направления радиального движения и соответственно его скорости. Но, как известно ускорение отражения никто не подразделяет на составляющие разных движений, справедливость чего мы и поясним ниже.

В предлагаемом анализе мы, разумеется, не будем учитывать возможное движение (отдачу) самого радиуса при отражении от него тела, т.к. эту отдача, которая в отсутствии поддерживающей силы представляет собой истинную силу Кориолиса, полностью компенсируется половиной поддерживающей силы. Тем более, что в классической версии явления Кориолиса никакой истинной силы Кориолиса нет. В классической физике, как это ни странно, замедление или ускорение радиально движущегося тела в отсутствии поддерживающей силы осуществляется и в отсутствии каких-либо тангенциальных сил, а только за счёт изменения пресловутого момента инерции!Ё! Во всяком случае в классической физике отсутствует понятие напряжение Кориолиса, т.е. сила Кориолиса не подразделяется на статическую и динамическую, а вся она якобы затрачивается на реальное ускоренное движение с ускорением Кориолиса, обеспечиваемом полной классической силой Кориолиса.

Оторвавшись после отражения от физического радиуса-направляющей, тело движется по инерции, не меняя больше углового положения и абсолютной величины вектора своей скорости (см. Рис. 4.1.3, положение 3). При этом тело удаляется от отразившего его радиуса в переносном направлении со скоростью, равной проекции своей абсолютной (отражённой) скорости на переносное направление. Одновременно тело удаляется и от центра вращения с радиальной проекцией абсолютной скорости. Однако угловое положение вращающегося физического радиуса продолжает непрерывно изменяться и после завершения взаимодействия отражения. Поэтому физический радиус постепенно догоняет вектор скорости тела по угловому положению.

Кроме того, все точки вращающегося радиуса имеют свою переносную скорость, которая тем больше, чем дальше она находится от центра вращения. Поэтому, как бы ни была велика отражённая инерционная скорость тела в переносном направлении, одновременно удаляющегося от центра вращения и в радиальном направлении, его рано или поздно настигнет соответственная точка на радиусе. Другими словами в процессе радиального движения тело неизбежно переместится в область переносного вращения, в которой тангенциальная скорость точки на радиусе сопоставима с скоростью тела в этом направлении, что приведёт к новому взаимодействию.

Рис. 4.1.3

В момент новой встречи с радиусом происходит новое отражение. Однако поскольку при приближении к точке встречи осуществляется постепенное сокращение разницы скоростей, то относительная скорость взаимодействия отражения в переносном направлении будет несколько меньше, чем во встречном взаимодействии в начале цикла. Поэтому при неизменной угловой скорости и неизменной по абсолютной величине радиальной скорости каждое последующее отражение будет происходить при меньшем различии исходных параметров взаимодействия, которые существовали перед первым взаимодействием цикла, вплоть до их полного совпадения в конце цикла.

То есть в конце цикла относительная скорость точки на радиусе и тела в переносном направлении становится равна нулю, а скорость относительного движения поворотного движения направлена строго вдоль радиуса с прежней абсолютной величиной. На этом полный цикл формирования поворотного движения и ускорения Кориолиса заканчивается (см. Рис. 4.1.3, поз. 4), после чего начинается новый абсолютно идентичный предыдущему цикл поворотного движения. Разумеется, это справедливо только при условии неизменности радиальной скорости относительного движения по величине и неизменности угловой скорости переносного вращения.

В противном случае переменное ускорение Кориолиса, как собственно и все переменные величины, будет, непредсказуемым и естественно не будет иметь никаких чётко выраженных циклов своего формирования. Условие неизменности радиальной скорости относительного движения по величине точно так же как и условие неизменности угловой скорости переносного вращения в соответствии с классической моделью явления Кориолиса обеспечивается внешним регулированием за счёт радиальной и тангенциальной внешней поддерживающей силы. При этом (ω = const), а (ацс = ацб). Теперь рассмотрим, какие приращения получает поворотное движение в процессе своего формирования, как по своему физическому смыслу, так и по величине.

В соответствии с механизмом отражения, ускоренное удаление тела от радиуса за счёт изменяющейся по направлению относительной скорости, определяется, как её проекция на перпендикуляр к отражающему радиусу. Но это и есть не что иное, как ускорение переносной скорости по абсолютной величине, а также не следует забывать, что в соответствии с механизмом отражения проекция относительной скорости на перпендикуляр к отражающему радиусу образуется в процессе отражения исключительно только за счёт обобщённого ускорения отражения. Следовательно, надо полагать, что ускорение радиальной скорости по направлению, ускорение переносной скорости по величине и ускорение отражения это одна и та же физическая величина. В противном случае, если допустить, что эти ускорения являются самостоятельными величинами, то угол отражения тела должен быть втрое больше угла падения, что не имеет ни энергетического, ни практического подтверждения.

Если же допустить, что самостоятельными являются только два поворотных ускорения, как это утверждает классическая физика, то угол отражения будет всего вдвое больше угла падения. Но поскольку законы отражения не зависят от ошибочных классических теорий, то тогда только одно из поворотных ускорений может быть представлено ускорением отражения либо изменение радиальной скорости по направлению, либо изменение переносной скорости по абсолютной величине, что так же не соответствует механизму отражения. Тело, изменив направление скорости при отражении, не может не удаляться от отражающей поверхности и наоборот. Остаётся только вариант триединства ускорения отражения, ускорения радиальной скорости по направлению и ускорения переносной скорости по величине.

А вот абсолютная величина каждого мгновенного ускорения отражения внутри цикла формирования ускорения Кориолиса может превышать среднее ускорение цикла не только вдвое, но и в десятки раз, что не меняет ни физического смысла ускорения Кориолиса, ни его обобщённую количественную величину. Количественная величина не меняется по той простой причине, что в среднем тело не может двигаться в направлении линейной скорости переносного вращения быстрее соответственной точки на радиусе, как мяч не может иметь среднюю скорость большую средней скорости футболиста.

Если тело получит, например, в 10 раз большее мгновенное ускорение отражения, чем среднее обобщённое ускорение Кориолиса, то к моменту отрыва от радиуса оно наберёт скорость в 10 раз большую средней скорости инерционного движения. Но тогда и радиусу, вращающемуся с постоянной угловой скоростью, понадобится в 10 раз большее время, чтобы догнать тело. Следовательно, среднее ускорение Кориолиса при неизменной угловой скорости и неизменной величине скорости относительного движения количественно останется неизменным:

ак = 10 * Vе / (10 * t) = Vе / t

Физическая же сущность ускорения Кориолиса не изменится, даже если в связи с переменной угловой скоростью переносного вращения и с переменной относительной скоростью, все отражения будут абсолютно разными по абсолютной величине, т.к. не количественные характеристики определяют физическое явление, а его физическая сущность. Поэтому даже если все отражения будут разными, их ускорения не перестанут быть ускорениями отражения, которые одновременно определяют, как изменение направления отражённого вектора скорости, так и вектора скорости нормального удаления тела от отражающей поверхности независимо от величины скорости. Помимо иллюстрации, показанной на рисунке (4.1.1), в этом можно ещё раз убедиться графически на рисунке (4.1.3), на котором это показано несколько иным способом. Но это лишь делает обе иллюстрации только более достоверными.

Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение это линейная скорость линейной скорости. Поэтому на рисунке (4.1.3, позиция 4) вектор ускорения по изменению радиальной скорости по направлению (ar), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr). Если перенести в конец вектора радиальной скорости ещё и вектор абсолютного ускорения параллельно самому себе, то можно увидеть, что вектор (ar) в точности совпадает с вектором (ae), как с проекцией той же самой (aабс) на ту же самую касательную к тому же самому годографу. Это свидетельствует о том, что скорости (Vе) и (Vr) имеют общий годограф, а вектор (ar) это такая же проекция абсолютной скорости, как и вектор (ae). Но один вектор (aабс) не может иметь две одинаковые проекции на одно и то же направление. Следовательно, векторы (ae) и (ar) это одна и та же физическая величина, которая и является ускорением Кориолиса.